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Deci;,nerc of cu:,.pi vrA and 1 s!, rue to, of computer rcience usually

bave ccrriparativ:ely little Info1r-ation about the way in which programinC

lanbuat~e nre actuall, ur M by t&*ical progrwnmers. We Lhink we know what

proermmerc ,enerally do, but our notions are rarely based on a representative

sample uf thc prod rams which are actually being run on computers. Since

compiler writer- muct prepare a system capable of translating a language

in all its Ienerality, it is easy to fall into the trap of assuming that

complicated constructions are the norm when in fact they are infrequently

used. There has been a long history of optimizing the wrong things, ucing

elaborate mechaniems to produce beautiful code in cases that hardly ever

arise in practice, while doing nothing about certain frequently occurring

situations. For example, the present author once found grnat significance

in the fact that a certain complicated ..cthod was able to translate the

etatement

C[Ix J1 := ((A+X)xY) +2.7 68+ ((L-M)x(-K))/Z

into only 19 machine instructions compared to the 21 instructions obtained

by a previously published method due to Saller et %l. (See Knuth [11].)

The fact that arithmetic expressions usually have an average length of only

two opcrands, in .racti7c, would have been a great chock to thc author at

that time!

There has been widespread realization that more data about language

use is needed; we can't really compare two different compiler algorithms
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.' w ,ltr,::,, " ' tal deal witl. Of course, the great

l t. k-!c, Lii tii as a "typical programmer"; there

'I ,',:it:uS .. i. , , c a'.iw pro .rami written by different people

wiVh dirrtterent n,, and s,.:ipathius, and indeed there is considerable

a:.i:.iou , , h:I dtM 'Liic L pUfotyeuns written by the same person. Therefore

we 2amvot t atlut aly ':,eami'ements to Ie very accurate, although we can measure

'ho de,!ee of varia , .,,r, in an attempt to determine how significant it is.

Not all poperties of pro ',rtns can be reduced to simple statistics; it is

necessary to study selected prograns in detail in order to appreciate their

cma-acteristics more clearly. For a survey of early work on performance

measurement and evaluation, see Calingaert [2] and Cerf [31.

During the summer of 1970, the author worked together with several

other people, In order to explore the nature of actual programs and the

corresponding implications both for software design and for computer science

education. Members of the group included G. Autrey, D. Brown, I. Fang,

D. Ingralls, J. Low, F. Maginnis, M. Maybury, D. McNabb, E. Satterthwaite,

R. Sites, R. Sweet, and J. Walters; these people did all of the hard work

which led to the results in this report. Our results are by no means a

definitive analysis of programming behavior; our goal was to explore the

varioas possibilities, as a group, in order to set the stage for subsequent

individual research, rather than to go off in all directions at once. Each

week the entire group had an eight-hour meeting, in order to discuss what

had been learned during the previous week, hoping that by combining our

differing points of view we might arrive at something reasonably close to

Truth.

A first idea for obtaining "typical" programs was to go to Stanford's

Computation Center and rummage in the wastebaskets and the recycling bins.
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i; is -we resualts but, sh.owedixedae- w~la1 l ',oul,; L)ax. 1it'": -cI_')os:

wastebasrret usually: receive ner:c.n prof-rvia s urf.or,' seemrs

likel tl.a' coirpilcrs usually, arecyfo tc4~eu''df" "5 ofl

so 2" Waz : ce55&L2> focr W('- .O. 8a.101 to

dit ~""Of IV~txc rT, (Cc (_. 1> f W

pro :* nye ex:-cellent anal-yses. c:' cQB,., 1: ,avc 8±'cad, cc:!

nade 'Free-lan [- ;ioult'I- ' and hller L1'art. one. of our1 :ai' L7oa1 s

was to stud- th:-e effect-s o1 v.aricus Iyp, cf epl -izto.,; 0o we etc

tLo restrict o-urselv.es to pro-r:s W_,sic:. actual> 13al toC compicti o.

Tuec wasteu&s/.et ri-ho -.rncl upT someC int-cr in- ora~iis.. _--c it was

not_ -call. satisfactor-.I wt! we!r'ed t.o autom:.c,, th-e process, oxtens2ove

tyiofrom the listilngs wou-ld ha.&re beer. necessary,; so we tried anoth!-er

tack. Our next method of obtaining, progzrams was to post a :m.an by the

card reader at various times; b-e would ask for ner-iissior toD cop-, deck s

onto a speci-al file. 'ifee prorams, totallino- ab-out yeA- cards, were

obtained. in) Tnis way' C-ut7 tee i0_. or S waLvryt -corsumiAn since iI was

necessary to explain the objectiv-.es of our projectI each. tim-.e and to- ask

embarrassir.o questions abou,.t thie sttsof people's pror)ra-ns.

Th-e next approach was to probe random>, amer.; the sem--orteoted

files stored on disks, looking for sou.rce text; tis was successful,'.

resulting in itprograsis, totalling about 2,-Ccards. 111e adA.ded- ninec

proy rr:is from the ',SD subroutine lib:rary, and th.ree prog ramTs fro7m ti-e

"Scientific Subroutine Packag7e", and some prod-uct ion pro-ate-. fromr tne

Stanford Linear Accelerator Center. 1, few classical bchark n~rco-r.ms

(nuclear codes, weatiher codes, and aerospace calcu-lations) wore alsoc

contributed by 123!4 representativ:es, anad to ton th'in,-s off we th roq CrSore

w.ograsris of personal interest t, ocies of -,he .:cc:p



. ,, it. va.:id collection of proigrams: some

['t)" ) 1[! c: :t ei)I L i , SO:ic u.. ; come important, some

' . i~-; -omc I'., p:',, wI(' ion. s ome ror play; some numerical, some

:. : LtL).i al.

Lt is wdli-':own .h at Ld fcTrt pro, ranming languages evolve different

It'. of prO. r'm:i:: so our ;tudy was necessarily language-dependent.

.oi. example, one would ex pect that expressions in APL programs tend to

he .on0er t-.Lan in l cLRN programs. But virtually all of the programs

oltain.ed iby our samplinr procedure were written in FORTRAN (this was the

fi.st surprise of thie summer), so our main efforts were directed toward the

study of I-OR'TRAN programs.1 /

Was this swaple representative? Perhaps the users of Stanford's

computers are more sophisticated than the general programmers to be found

elsewhere; after all we have such a splendid Computer Science Department!

But it is doubtful whether our Department had any effect on these programs,

because for one thing we don't teach FORTRAN; it was distressing to see what

little impact our courses seem to be having, since virtually all of the

programs we saw were apparently written by people who had learned programing

elsewhere. I'rthermore, the general style of programming that we found

showed very little evidence of "sophistication"; if it was better than

average, the average is too horrible to contemplate! (This remark is not

intended as an insult to Stanford's programmers; after all we were invading

their privacy, and they would probably have written the programs differently

By contacting known users of ALGOL, it was possible to collect a fairly
representative sample of ALGOL W programs as well. The analysis of
these programs is still incomplete; preliminary indications are that
the increased flexibility of data types in ALGOL W makes for much more
variety in the rature of inner loops than was observed in FORTRAN, and
that the improvid control structures make GO TO's and labels considerably.
less frequent. A comprehensive analysis of ALGOL 60 programs has
recently been completed by B. Wichmann [19].

We analyzed one PL/I program by hand. COBOL is not used at Stanford's
Computation Center, and we have no idea what typical COBOL programs are like.
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if' they had known the code was to be scnitinized by self-appointed experts

like ourselves. Our purposes were purely scientific, in an attempt to find

out how things are, without moralizinil or judging people's competence.

The point is that the 'Stanford sample seems to be reasonably typical of

what might be found elsewhere.) Another reason for believing that ou,'

sample was reasonably good is that the programs varied from text-editing

and discrete calculations to number-crunching; they were by no

means from a homogeneous class of applications. On the other hand we do

have some definite evidence of differences between the Stanford sample and

another sample of over 400 programs written at Lockheed (see Section 2 of

this report).

The programs obtained by this sampling procedure were analyzed in

various ways. First we performed a static analysis, simply counting the

number of occurrences of easily recognizable syntactic constructions.

Statistics of this kind are relevant to the speed of compilation. The

results of this static analysis are presented in Section 2. Secondly, we

selected about 25 of the programs at random and subjected them to a dynamic

analysis, taking into account the frequency with which each construction

actually occurs during one run of the program; statistics of this kind are

presented in Section 3. We also considered the "inner loops" of 17 programs,

translating them by hand into machine language using various styles of

optimization in an attempt to weigh the utility of various local and global

optimization strategies; results of this study are presented in Section 4.

Section 5 of this paper summarizes the principal conclusions we reached,

and lists several areas which appear to be promising for future study.
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e:',c'.ei a 1-r. ,, :mnr of FO.RTRAN programs to see how frequently

,' ., . ori, a!c used Ln practice. Over 250,000 cards

S ' pt's !?I:i:, pruVra:%s) were analyzed by Mr. Maybury at the computer

*',*:te:' ,:,lf 1.' te, i ).sile and Space Corporation in Sunnyvale.

.',albJ ., .l ows tLhe distr'ibution of statement types. A "typical

I. uckheed pro'run" consi'ts of 120 coment cards, plus 178 assignment

.t t .'"s, 5t 6O TO's, 'Al CAL's, 21 CONTINUE'j, 18 WRITE's,

L:: i'0R ':, 17 DO's, 72 miscellaneous other statements, and 31 continuation

, ardc (r.., Ly involving; CO'ON or DATA). Essentially the same overall

distyr1bution ot' statement types was obtained when individual groups of

about pro,;:rans were tested, so these statistics tended to be rather

stable. We forgot to test how many statements had nonblank labels.

The same test was run on a much smaller but still rather large

collection cf programs from our "Stanford sample" (about 11,000 cards).

tivifortunately the corresponding percentages shown in Table 1 do not agree

verv well with the Lockheed sample; Stanfordites definitely use more

assignments and less IF's and GO's than Lockheedians. A superficial

examination of the programs suggests that Lockheed programmers are

perhaps more careful to check for erroneous conditions in their data.

Note also that 2.7 times as many comments appear on the Lockheed programs,

indicating scrmewhat more regimentation. The professional programmers at

Lockheed have a distinctly different style from Stanford's casual coders.
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Talble 1. [)istribution of statement types.

loc kheed Stanford
Nunber Percent x Ntunber Percent- £

Asciv.nment 78), , 5 If. 48() 51
TI 7 7 x . l. 5 816 x.* 8.5--
uOTO V1 777 8
CAL '1 i' ,8 539 1
CON9UI ')1 5 5 309 3
WRI'lTv 7705 5013 5
FORMAT 7(55 80 4
DO 71,76 h h57 5
DATA lO,8 2 28 .3
RER' 55,9 2 186 2
DI14 SION "5i92 2 l)4i 1.5
COHM0N 2938 1.5 263 3
END 25(5 1 121 1
BUFF 1-;R 2501 1 0 0
SUBRO1YrTNE, 201 1 93 1
REWIND 1724 1 6 -
I.XUIVALI.NCE 1382 .7 U1S 1
ENDFILE 765 .4 2 -
IUTEGER 657 .3 34 3
R'AD 586 .3 92 1
ENCODE 583 .3 0
DECODE 557 .3 0 -

PRINT 345 .2 5-
F iRY 279 .1 15 .2
STOP 190 .1 11 .1
LOGICAL 170 .3. 9 .1
REAL 147 .i 1 -
IDENT 106 .1 0 -

DOUBLE 3 - )9
OVERLAY 82 - 0 -

PAUSE 57 - 6 .i
ASSIGN 57 - 1. -

PUNCH 52 - 5 .1
EXTERNAL 23 - 1 -

IMPLICIT 0 - 16 1.5
COMPLEK 6 o -
NAMELTST 5 - 0
BLOCKDATA 1 - -

INPT 0 - 0
OUTPUT 0 - 0 -

CoE 529214 (28) 1o9o (.1)
CONTINUATION 13.709 (7) 636 (7)

• Percent of total number of statements'excluding comments and continuation
cards.

** The construction 'IF ( ) statent' cowto as an IF as well as a
statement, sw the total is more than IOMt.
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" .. wu!, :I'o r tr ]n.ecti*'ated to detenine their length

,'u:t .,i|,h , :' : i k~', o' ', o' Lie DO statemenits used the default

.. ,, ,t" .1 . M. AO loops were quite short, involving only one or

[,'n,,t 1 "5 >5
Niumbe r " . I} 7 58 76 lO43 lO43

lht 7 7583 576 105 14

Perc e t .16.- 9.5 7 13 13

'hv deptli ot' DO tiectinjt was subject to considerable variation; the following

"c+a c wer-e obtained:

Depth . 24 5 > 5

Niumber 1"l.l 1853 1194 437 118 120

Percent 55.5 23 15 5.5 1.5 1.5

Of the :-,,378; IF statements scanned, 8858 (304) were of the "old

style" IF (...) n, 2 n5 or IF (...) nin 2 while the other 19925 (70%)

had the form I1' (...) statement; 14258 (714) of the latter were

"IF (...) GO TO ". (These count also as GO TO statements.) Only 1107

of the 25719 GO TO statements were computed (switch) GO's.

An average of about 48 trailing blank columns was found per non-comnent

card. A compiler's lexical scanner should therefore include a high-speed

skip over blanks.

Assignment statements were analyzed in some detail. There were 83304

assignment statements in all; and 56751 (684) of them were trivial

replacements of the form A = B where no arithmetic operations are present!!/

The remaining assignments included 10418 of the form A - A op a , i.e.,

the first operand on the right is the some as the variable on the left. An

In the Stanford sample the corresponding figures were 2379 out of 116
(49): this was another example of a Lockheed-vi --Stanford discrepncy.

8



attempt was made to raLe the complcxlty oI an a"stimient. ctatement,

counting one po'Int for eachl + or - v iye for each " , and

3 for each /' the distribution was

Complexity 0 7 2 1, " 7

Number 5' 'IA ilili(5 121 10( 2(,7 2);( 13.993 5(2' 2359 552

Percent t.8 17.5 1.5 .1 .5 3 2 .6 6 • -

Occurrences of operators and constants were also tallied:

Operator + - / x-x standard constant
_,function

Occurrences 17973 10298 123118 14739 308 90257 3994 h19386

It is rather surprising to note that 7200 (404) of the additions had the

fonn a4-1 ; 3h9 (3d) of the multiplications had the form at*2

180 (It%) of the divisions had the form a/2 ; 427 (39%) of the

exponentiations had the form a*-2 . (We forgot to count the fairly

common occurrences of 2*x , 2.*a , cx*2. , a/2. , 2.0"a , etc.)

The program analyzed indices, although it was unable to distinguish

subscripted variables from calls on programmer-defined functions. Of the

166, 599 appearances of variables, 97051 (58) were unindexed, 50979 (30.54)

had one index, 16181 (9.54) had two, 2008 (14) had three, and 380 (.24)

had four.

Another type of "static" test on the nature of FORTRAN programs was

also made, in an attempt to discover the complexity of control flow in the

programs. John Cocke's "interval reduction" scheme (see [41) was applied

to fifty randomly-selected FORTRAN programs and subroutines, and in every

case the flow graph was reduced to a single vertex after six or less

transformations. The average number of transformations required per

program was only 2.75.

The obvious conclusion to draw from all these figures is that

compilers spend most of their time doing surprisingly simple things.

9



Thv statio count-c tabulated above are relevant to the speed of

compilation, but tticy do not really have a strong connection with the

cpued of object p'on'axi execution. We need to give more weight to

statements that are executed more frequently.

Two different arproachec to dynamic program analysis were explored in

the course of our study, the method of frequency counts or program profiles

and the method of program status sampling. The former method inserts

counter.s at appropriate places of the program in order to determine the

mu iber of times each statement was actuall.y performed; the latter method

makes use of an independent system program which interrupts the object

program periodically and notes where it is currently executing instructions.

Frequency counts were commonly suudied in the early days of ccmputers

(see von Neumann and Goldstine [14 ]), and they are now experiencing a

long-overdue revival. We made use of a program called FORDAP, which had

been previously developed in connection with some research on compilation;

FORDAP takes a FORTRAN program as input, and outputs an equivalent program

which also maintains frequency counts and writes them onto a file. When

the latter program is compiled and run, its output will include a listing of

the executable statements together with their frequency --ounts. See

Figure I, which illustrates the output corresponding to a short program:

using an extension of FORDAP which includes a rough eatimate of the relative

cost of each statement (Inep.lls [9]). The principles of preparing such

a routine wcre independently developed at UCLA by S. Crocker and E. Russell [15];

Russell's efforts were primarily directed towards a study of potential

parallelist, in programs, but he also included some serial analyses of large

scale routines which exhibit the same phenomena observed in our own studies.

10



Frequency counts add an important new dimension to the FORTRAN

programs; Indeed, it is difficult to express in words just how tremendously

"eye-opering" they are! Even the small example in Figure 1 has a surprise

(the frequency counts reveal that about half the running time is spent in

the subroutine linkage of the FUN function). After studying dozens of

FORDAPed programs, ant after experiencing the reactions of programmers

who see the frequency counts of their own programs, our group came to the almost

unanimous conclusion that all software systems should provide frequency

counts to all prograrmers, unless specifically told not to do so!

The advantages of frequency counts in debugging have been exploited

by F. Satterthwaite [1(] in his extensions to Stanford's ALGOL W

compiler. They can be used to govern selective tracing and to locate

untnsted portions of a program. Once the program has been debugged, its

frequency counts show where the "bottlenecks" are, and this information

often suggests improvements to the algorithm and/or data structures.

For example, we applied FORDAP to itself, since it was written in FORTRAN,

and we immediately found that it was spending about half of its time in

two loops that could be greatly simplified; this made it possible to double

the speed of FORDAP, in less than an hour's work, without even looking at

the rest of the program. (See Example 2 in Section h below.) The same

thing happened many times with other programs.

Thus our experience has suggested that frequency counts are so

important they deserve a special name; let us call the collection of

frequency counts the profile of a program.

,Programs typically have a very jagged profile. with a few sharp peaks.

As a very rough approximation, it appears that the n-th most important

statement of a program from the standpoint of execution time accounts for

11



0 coo~
UO G a 0. 0 0 a aO 0a00o0

z

w. N N ry fin f"

)44

0

.113

to

44

£ H
.IJ .42 a - '

zz

36 uL,

1 ftn *- I
200 4 a li W

xI ft a. > fm
UJ J0 Z- Lu ae
m * +q U.

J~r . . NU .~ A d£ £ £ P Ac c 00 J

v ~ ~ ~ ~ ~ ~ ~ U U. to. U.Zi 1U . .U W d

x 0 t"*10 0-CL-
.4 Oi ac oZ001 j

12



about (a-I)a n of the running time, for some o and for small n . We

also found that less than 41 of a program generally accounts for more tha

half of its running time. 'T'his has important consequences, since it means

that programmers can make substantial improvements in their own routines ....

by being careful in just a few places; and optimizing compilers can be

made to run much faster since they need. not study the whole program with

the same amount of concentration.

Table 2 shows how the relative frequency of statement types changes

when the counts are dynamic instead of static; this table was compiled from

the results of 24 FORDAP runs, with the statistics for each program weighted

equally. We did not have time to break down these statistics further

(to discover, for example, the distribution of operators, etc.), except

in one respect: 455 of the assignment statements were simply replacements

(of the form A = B where B is a simple variable or constant), when

counting statically, but this dropped to 35% when counting dynamically.

In other words, replacements tend to occur more often outside of loops

(in initialization sections, etc.).

Table 2. Distribution of executable statements.

Static (percent) Dynamic

Assignment 51 67
IF 10 11
GO TO 9 9
DO 9 5
CALL 5 3
WRITE 5 1
CONTINUE 4 7
RETMN 4 3
READ 2 0
STOP 1 0
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The othtr: ,zwppr'oh to 4TynMIc statistics-gathering, based on program

tatus '.tomp11n, t, r - to ie less, precise but more realistic, in the sense

,hat. It shows how much time is actually spent in system subroutines. We

used and extended a routine called PROGTIME [10] which was originally

developed by T. Y. Johnston and R. H. Johnson to run on System 360

t nder MVT. PROGTINUM spawns the user program as a subtask, then samples

its status word at regular intervals, rejecting the datum if the program

was dormant since its last interruption. An example of the resulting

"histogram" output appears in Figure 2; it is possible (although not

especially convenient) to relate this to the FORTRAN source text.

In general, the results obtained from PROGTIME runs were essentially

what we wouid have expected from the FORDAP produced profiles, except for

the influence of input/output editing times. The results of FORDAP would

have led us to believe that the code between relative locations 015928

and 015A28 in Figure 2 would consume most of the running time, but in

fact 70% of the time was spent in those beloved system subroutines

IHCECOM{ and IHCFCVTH (relative locations 016A88 through 019080 .

Roughly half of the programs we studied involved substantial amounts of

input/output editing time, and this led us to believe that considerable

ga 4mnr in efficiency would be achieved if the compilers would do the editing

in-line wherever possible. It was easy to match up the formats with the

quantities to be edited, in every case we looked at. However, we did not

have time to study the problem further to investigate just how much of an

improvement in performance could be expected from in-line editing. Clearly

the general problem of editing deserves further attention, since it seems

to use up more than 254 of the running time of FORTRAN programs in spite

of the extremely infrequent occurrence of actual input/output statements

reflected in Table 2.
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"a U W 'amdon :M t e o0 ti0-L sapling proCess) two MOGTIMEs

kh' Cru".01,r:"U1 w1ll 1ot, ;lve idcntical results. It is possible to

410' ,w cutate contqu ,cn u and accurzate running times by using the

tt,'"i1que of "J ump tracln " (co 6aines [7, Chapter 3}). A jump trace

outine scans ,a proratm, down to the next branch instruction, and executes

the Intervening code at machine speed; when a branch occurs the location

t:rans'erred to is written onto a file. Subsequent processing of the file

makes It possible to infer the frequency counts. The jump trace approach

does not require awxiliary memory for counters, and it can be used with

arbitrary machine language programs. Unfortunately we did not have time

to develop such a routine for Stanford's computers during the limited time

in which our study was performed.

h. The Inner Loops

We selected 17 programs at random for closer scrutiny; this section

contains a summary of the main features of these programs. (It is worth

emphasizing that we did not modify the programs nor did we discard programs

that did not produce results in accordance with our preconceived ideas;

we analyzed every routine we met whether we liked it or nott The result is

hopefully a good indication of typical FORTRAN programming practice, and

we believe that a reader who scans these programs will obtain a fairly clear

conception of how FORTRAN is being used.) First the program profile was

foand, by running it with FORDAP and PROGTIME. (This caused the chief

limitation nn our selection, for we were unable to study programs for

which input data was on inaccessible tapes or otherwise unavailable.) In

each case a glance at the profile reduced the program to a comparatively
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small piece of code which represented the majority of the execution time

o.xclusive of' input/output statements. These "inner loops" of the programs

ar' presented here; the nwames of Identifiers have been changed in order to

tijve some anonymity, but no uther chaunges have been inade.

In each case we hand-tranclated the inner loop into System/3(o

machine language, usint; five different styles of "optimization":

Level 0. Straight code generation according to classical one-pass

conpilation techniques.

Level 1. Like level 0 but using local optimizations based on a good

knowledge of the machine; common subexpressions were eliminated

and register contents were remembered across statements if no

labels intorrvene, etc., and the index of a DO was kept In a

register, but no optimizations requiring global flow analysis

were made.

Level 2. "Machine-independent" optimizations based on global flow

analysis, including constant folding, invariant expression

removal, strength reduction, test replacement, and load-store

motion (cf. Allen [1]).

Level 3. Like level 2 plus machine-dependent optimizations based on

the 360, such as the use of BXLE, LA, and the possibilities

afforded by double indexing.

Level h. The "best conceivable" code that would be discovered by any

compiler imaginable. Anything goes here except a change in the

algoritim or its data structures.

These styles of optimization are not extremely well defined, but in

each case we produced the finest code we could think of consistent with that

17



b,. t Iii :at'-,%' kv"u ry cas-e Ti was noticeably better than the

,i,:~ i,.:: t. iu |prcu',,,[y b' t: i.zJt. FORTRAN compilers; FORTRAN H OFT 02

wk-u1d prettunabi-y tie b',Le to rach level it' It were carefully tuned.)

Lt-.k-i 1, ieprest,!tUs thc ultinxate achievable, by comparison with what is

realized by current techniques, in an attempt to assess whether or not

an additional effort would be worthwhile.

These styles of optimization can best be appreciated by studying

I.'xanple 1 for which our machine language coding appears in the Appendix

to this paper. Tt is appropriate to restrict our attention solely to the

inner loop, since the profiles show that the effect of optimization on

this small part of the code is very indicative of the total effect of

optimization on the program as a whole.

In order to compare one strategy to another, we decided to estimate

the quality of each program by hand instead of actually running them with

a timer as in (18]. We weighted the instructions in a crude but not

atypical manner as follows: Each instruction costs one unit, plus one if

it fetches or stores an operand from memory or if it is a branch that is

taken, plus a penalty for specific slower opcodes:

Floating add/subtract, add 1

Multiply, add 5

Divide, add 8

Multiply double, add 13

Shift, add 1

Load multiple, add 1 n (n registers loaded)1 2

Store multiple, add n (n registers stored)

This evaluation corresponds rougnly to 1 unit per 0.7 microseconds on

our model '7 computer. Other machine organizations ("pipelining", etc.)

would, of course, behave somewhat differently, but the above weights

should give some insight. We also assumed the following additional costs

18



fior the time spent in library cubroutines (of. [8]):

00RT 85

SIN, COS 110

ALOU 120

ERF 1.0

Complex multiply ,0

Real *k Integer 75

Example 1. The first program we studied involved 140 executable statements,

but the following five represented nearly half of the running time:

DO 2 J = 1,N
T ABS(A(IJ))
IF (T-S) 2,2,1

1 S=T
2 CONTINUE

Statement I was executed about half as often as the others in the loop.

The programs in the Appendix have a "score" of

37.5 , 28.5, 14, 8 , 7

for levels 0, l, 2, 3, 4 respectively.

The same program also included another time-consuming loop,

DO 3 J = I,N
3 A(I,J) = A(I,J)*B

for which the respective scores are

51 , 29 , 17 , 12, 11

In this case level 0 is penalized for calculating the subscript twice.

Example 2. (This came from the original FORDAP program itself.) Although

there were 455 executable statements, over half of the program time was

spent executing two loops like this:

DO 1 J = 38,53
IF (K(I).EX.L(J)) GO TO 3

1 CONTINUE
2 . .
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:.,, I . . 'r'in it.,'u calve 'espective scores of

0,.'01 , oor '.' . obtained in an interesting way which applies to

-,,vew.P oh!,er loops we liad exvanined earlier in the summer; we call it the

h.iqu,. ot oombinitn tests. 'Phe array element L(5h) is set equal to

S so tiat the loop involves only one test; then after reaching L3,

1:' J A4 we go back to L. The code is

Q. tA ',8(, )C ii,O(O,5)

hi':n 5 (Register 5 contains A(I.3))
C 1,(o,3)
BNE QI

1, 5 . .

TV necessarv, L(54) could be restored.

of course, in this particular case the loop is executed only 16 times,

and so it could be completely unrolled into 32 instructions

C 4 1.L( B

BF.R 5
C , L(39)

BI!R 5

C it,L(53)
BER 5

reducing the "score" to 3. But in actual fact the L table was loaded

in a DATA statement, and it contained a list of special character codes;

a ,,ore appropriate program would replace the entire DO loop by a single

test

IF (LT(K(I))) 1,3,1

fur a suitable table LT, thereby saving over half the execution time of the

program. (Furthermore, the environment of the above DO loop was

DO 2 1 = 7,72

so that any assembly language programmer would have reduced the whole business

to a sinirle "translate and test".)
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DOUBLE ABD
DO 1 K l I,N
A - T(I-K,l+K)
B - T(I-K,J+K)
D = D-A*B

(This is one of the few times we observed double precision being used, although

the numerical analysis professors in our department strongly recommend

against the short precision operators of the 360; it serves as another

indication that our department seems to have little impact on the users

of our computer.) The scores for this loop are

89 , 67 , 38 , 13 , 12 ;

here level 2 suffers from some clumsiness in the indexing and a lack of

knowledge that an ME instruction could be used instead of MD.

Example 4. Here the inner loop is longer and involves a subroutine

call. The following code accounted for 70% of the running time; the entire

program had 214 executable statements.

DO 1 K = M,20
CALL RAND(R)
IF (R .-GT .81) N (K) 1

1 CONTINUE
... .. a

SUBROUT11M RAND(R)
J = 1*65539
IF (J) 1,2,2

1 J = Z+2147483647+1
2 R=J

R = R*.4656613E-9
I =J
K K+l
RETURN
END

(Here we have a notoriously bad random number generator, which the programmer

must have gotten out of an obsolete reference book; it is another example

of our failure to educate the eoemunlby,) Conversion from integer to real

is assumed to be done by the sequence
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I' r, '!..' l

'o Cu I t, at,.Lu ,n: .,t.: d' ,,:A: and ;P.l.H1. By further adjusting these

-31!onctanvs uLh mu.11.plicat-on by .)W5661E-9 A 2 1 could be avoided;

but this o er":atiot was felt to be beyond the scope of level 4 optimization,

althouw:t it would occur naturally to any programmer using assembly language.

The most interesting thing here, however, is the effect of subroutine

linkage, since the longt proloue and epilogue significantly increases the

time of the inner loop. The timings for levels 0-3 assume standard OS

subroutine conventions, although levels 2 and 3 are able to shorten the

prolotguie and epilogue somewhat because of their knowledge of program flow.

For levelh, the subroutine was "opened", placed in the loop without any

linkage; hence the sequence of scores,

19.9 , 105.1 , 81.h , 76.2 , 27.2

Without subscripting there is comparatively little difference between

levels 0 and ,; this implies that optimization probably has more payoff

for FORTRAN than we would find for languages with more flexible data structures.

It would be interesting to know just how many hours each day are spent

in prologues and epilogues establishing linkage conventions.

Example 5. The next inner loop is representative of several programs

which had to be seen to be believed.

DO 1 K = 1,N
M = (J-1)*lO+K-1

IF (M.Ec.O) M = 1001
Cl Cl+Al(M)*(Bl*-*(K-1))*(B2**(J-1))
C2 - C2+A2(M)*(Blx-*(K-1))*(B2**(J-1))
IF ((K-l).EX.0) T = 0.0
IF ((K-l).GE.1) T = Al(M)*(K-1)*(BlI*(K-2))*(B2**(J-1))
C = C3+T
IF ((K-1).EQ.0) T = 0.0
IF ((K-l).GE.I) T = A2(M)*(K-I)*(Bl**(K-2))*(B2**(J-I))
Ch = C4+T
IF ((J-1).%,.O) T = 0.0
IF ((J-l).GE.l) T = Al(M)*(Bl*-*(K-1))*(J-I)*(B2**(J-2))

C5 = C5+T
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i, ( (J - ) .I .,) T 0.0
IF. (0j-)..1) Tr =a2(M) *(Bl**(K-1))*x(J-1),(Bix,,(.T-2))

31 CONTINUE

After staring; at this for several minutes, our group decided it did not

deserve to be optimized. But after two weeks' rest we looked at it again

and found interest~in. applications of "strength reduction", both for the

exponentiations and for the conversion of K to real. (The latter applies

only in level 4, which knows that K doesn't get too large.) The scores

were

13f7 , 7 545 , 159 , 145 , 10 •

Level 1 optimization finds common subexpressions, and level 2 finds the

reductions in strength. Level I removes nearly all the IF tests and

rearranges the code so that C1 and C2 are updated last; thus only

Bl*-*(K-1) is necessary, not both it and Bl**(K-2)

Example 6. In this case the "inner loop" involves subroutine calls

instead of a DO loop:

SUBROUTINE S(A,B,X) 9
DIMENSION A(2),B(2) 9
X O 9
Y = (B(2)-A(2))*l2+B(l)-A(l) 9
IF (Y.LT.0) GO TO 1 9
X =Y 5

1 RETURN 9
END 9
SUBROUTINE W(AB,C,D,X) 4
DIMENSION A(2),B(2),C(2),D(2),U(2),v(2) 4
X =0 h
CALL S(A,D,X) 1
IF (X.Ba.O) GO TO 3 4
CALL S(C,B,X) 2
IF (X.EQ.O) GO TO 3 2
CALL S(C,A,X) 1
u(l) = A(l)
u(2) = A(2) J.
IF (X.NE.O) GO TO 1 1
U(l) C(l) o
u(2) = c(2) 0

1 CONTINUE 1
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VALl )(1,D,X) 1

2) D(l) 0
lIi' (x,.Ni..o) GO TO 2 1

• ().D(1) 0
V()= D(2) 0

: CALL S(U),VX) 1
CONTINUE 4
R E'rURN 4

The numbers at the right of this code show the approximate relative

frequency of occurrence of each statement; calls on this subroutine

accounted for ,0e cf the execution time of the program. The scores for

various optimization styles are

1545.5 , 1037.5 , 753.3 , 736.3 , 289

Here 270 of the 1545.5 units for level 0 are due to repeated conversions

of the constant 0 from integer to real. Levels 2 and 3 move the first

statement "X = 0" out of the main loop, performing it only if "Y.LT.O"

The big impiovement in level 4 comes from inserting the code for subroutine

S in line and making the corresponding simplifications. Statements like

u(i) = A(1) , U(2) = A(2) become simply a change in base register.

Perhaps further reductions would be possible if the context of subroutine W

wer examined, since if we denote 12*A(1)+A(2) by a , 12*B(1)+B(2) by b ,

etc., the subroutine computes max(O, min(b,d)-max(a,c)) .

Example 7. In this program virtually all of the time exclusive of

input/output editing was spent in the two loops

DO 1 I = l,N
A = X**2+Y*42-2.*X*Y*C(I)
B = SqRT(A)
K = 100.*B+I.5

1 D(I) = S(I)*T(K)
Q = D(1)-D(N)
DO 2 1 = 2,M,2

2 Q = Q+14.*D(I)+2 .*D(I+l)
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where array D was not used Eubsequently. The scores are

Here level 3 computes X'*2 by "M,R 0,0" instead of a subroutine call,

and it computes .2.xD(1I4) by "ALR 0,0" instead of multiplying. Level I

combines the two DO loops into one and elininates array D entirely.

(Such savings in storage space were present in quite a few programs we

looked at; some matrices could be reduced to vectors, and some vectors

could be reduced to scalars, due to the nature of the calculations.

A quantitative estimate of how much space could be saved by such optimization

would be interesting.)

Example 8. Ninety percent of the running time of this program was spent

in the following subroutine.

SUBROUTINE COMPUTE
COMMON ....
COMPLEX Y(lO),Z(lO)
R = REAL(Y(N))
P = sIN(R)
Q = cos()
S = c*6.*(P/3.-q*Q*P)
T = l1421*P*Pxq*C*6.
U = T/2.v = -2. -6.*(p13.-Q**I2. )

z(2) = (O.,-l.)*(U*Y(l)+V*Y(2))
RETURN
END

This was the only example of complex arithmetic that we observed in our

study. The scores

841.5 , 735.5 , 336 336 , 249

reflect the fact that levels 0 and 1 make six calls on the complex-multiply

subroutine, while levels 2 and 3 expand complex multiplication into a

sequence of real operations (with obvious simplifications). Level 4 in

this analysis makes free use of the distributive law, e.g.
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q

C CP' H.-, .) , althougth this may not be numerically justified.

!Prthermorc level 4 assumes the existence of a single "SINCOS(R)"

subroutine that computes both the sine and cosine of its argument in

1--5 units of time; programmers who calculate the sine of an angle usually

want to know its cosine too and vice versa, and it is possible to calculate

both in somewhat less time than would be required to compute them

indiv idually.

iLamp l 9. A program with 245 executable statements spent 70 percent of

its time in

DO 2 K.= 1,M
DO 2 J = 1,M
X 0.
Y= 0.
DO 1 I = 1,M
N (J+J+(I--)*M2)
B = A(K,I)
X = X+B*Z(N)

1 Y = Y+B*Z(N-1)
DY(L) = W*X
DY(L+l) -W*Y

2 L = L+2

when IM was only 5. Scores (for the innermost I loop only) are

84 , 69 , 30 , 24 , 24 ,

reflecting the fact that level 4 cannot do anything for this case.

Example 10. In this excerpt from a contour plot routine, the CALL is only

done rarely:

DO 1 I = L,M
1 IF (X(I-lJ).LT.Q .AND X(I,J) .GE. Q) CALL S(Al,A2,A3,A4,7,A5)

The scores, assuming that X(I) .LT.Q about half the time, are

4O, 11.5 , 14.5 , 7.5, 5

Level 3 keeps Q in a register, while level 2 does not. Level 4 is
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especially interesting since it avo'dsc testing X(I-1,J).LT.Q in

those cases where it Is known to be true from the previous loop. We

had no iced similar situations in other routines.

Example 11. This "rast Fourier transfonn" example shows that inner

loops aren't always signalled by the word "DO".

1 K = K+1
Al = A(K)*C(J)+Al
BI = B(K)XC(J).tiBl
K =K+l
A2 = A(K)*S(J)+A2
B2 = B(K)*S(J)+B2
J = J+I
IF (J.GT.M) J = J-M
IF (K.LT.M) GO TO 1

The scores are

118 , 91, (, 54, 50 ;

level 4 is able to omit the second "K = K+1" , and to use a BXLE for "J =J+I".

Example 12. Unfortunately an inner loop is not always as short as we had

hoped. This rather long program (1300 executable statements) spent about

half of its time in the following rather horrible loop.

DO 5 I = l,M
JO - J1
IF (Jo.EQ.O) JO = J2
J1 = Jl+l
J5 = J3+lI4 .- J4+1

IF (J4.E.(L(J-l)+l)) J = 1
J5 = Jl+l
IF (J5.EQ.(J2+l)) J5 = 1
Ul = U(J1,,KlK2)
Vl = V(JlKlK2)
W1 = W(Jl,Kl,K2)
P(Jl)= .25*(Ql(I)*(Vl+V(J3,K3,K2))*(Wl+W(JK3,,K2))+Q2(I) *(vl+ v( J3+1 K3 X, )).(W1+W (J3+1, K3,)2)-Q3(I)*(vl+V(Jl x2)K)*(wlW(Jl,K4,K2))

+ D( (Ul1+U (J 5., NMR) (*W1W (J, 5j. K ) Y)
-(Ul+U(JO,I,) ) *(w1024(Jo,KljK2))))

+Rl(jl, 1) *R2(K)*(S(Jl, K2+l) *(Wl+W(Jl, Kl, K2+l))
-S(Aj, K2) *(wl+w(Jl, K1, K2-l)))
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1 (.() PW - . 'q1,( I) V1+V(Jt,, K14,K2) )*(Wl+W(J6, K4,K2) )
10 TO )IF. ;%,'...1) J-o TO •Mw
P,(.J.) P ( l) + .:')x() (Vl-V(J,-1-, K3, K2))*(Wl+W(J3-lIK3,K2))
-0 TO
P(J1) P(JI)+. 25*Qli (i) *(VI+V(J2+, K3, K2) ) *(wl+w(J2+4, K, K2))

Here levels 1 and 5 have just enough registers to maintain all the

neeessaryo indices; the scores are

"2 , 5.3 2h2, 258 207

Level I observes that Jt, can more easily be computed by ".J6 = J4". before JA

is changed; and the Q4 (I) terms are included as if they were conditional

expressions within t?',e big formula for P(Jl)

Exwnple 1 . ere is a standard "binary search" loop.

1 0
K N+l

1 J = (I+K)/2
IF (J.EQ.I) GO TO 5
IF (x(,J)-XO) 2,4,3

2 I J
GO TO 1

-, K=J

GO TO 1
14 ..

5 . .

The scores

21 5 27 21 10

or the inner loop are of interest primarily because level 4 was able to

beat level 3 by a larger factor than in any other example (except where

subroutines were expanded in-line). The coding for level 4 in this case

consisted of six packets of eight lines each, one for each permutation of

the three registers a , , 7
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L10ty JA -y.,( ,a
,"R y,1H RT "Y, I
('Ii{ ?.,:

BE;' 105,tBF: Ory

Llco3

Here 4I, 4J, I;K are respoct.ively acsumed to be in registers a , ,

register 8 contains -t . Division by 2 can be reduced tc a shift since

it is possibl to prove that I , J , K are nonnegative. Half of the

"CR t ,(; BE L5Y' could have been removed if X(O) were somehow set

to "-." ; this would save another 104.

Actually the binary search was not the inner loop in the program we

analyzed, aithough the programmer (one of our group) had originally thought

it would be! The frequency counts showed that his program was actually

spending most of its time moving entries in the X table, to keep it in order

when new elements were inserted. This was one of many cases we observed

where a knowledge of frequency counts immediately suggested vital improvements,

by directing the programmer's attention to the real bottlenecks in his

program. Changing to a hash-coding scheme made this particular program

run about twice as fast.

rAamples 14-17. From this point on the programs we looked at began to

seem rather repetitious. We worked out four more examples, summarized

here with their scores.

DO 1 I - 1,N
C C/D*R
R = R+l.

1 =D-1. (45 , 42, 27 , 1 , 2]

DO 1 J = IN
H(I,J) = H(IJ)+S(I)*S(J)/D1-S(K+I)*S(K+J)/D2

1 H(J,I) =H(I,J)1% , 1 3 ) 5 19 ; 41 52196 , 105 , 58 , 149 , 11.53
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T1' (Y.LTT.O.O) GO TO 1

R . O ) low frequency
1 F -- .O-O.5"(1.o ERF(-y'))

ROPURUI
M'D

[219.5 , 208.5 , 191.3 , 191.3 , 1511

DO I T = I,N
1 A =A+B(I)+C(K,I) (1 , 31 , 14, 9 , 81

(The latter example is the loop from 015928 to 015A28 in Figure 2.)

Cursory examination of other programs led us to believe that the above

seventeen examples are fairly representative of the programs now being

written in FORTRAN, and that they indicate the approximate effects

achievable with different styles of optimization (on our computer). Only

one of the other programs we looked at showed essentially different

characteristics, and this one was truly remarkable; it contained over 700

lines of straight calculation (see the excerpts in Figure 3) involving

no loops, IF's or GO's 1 This must be some sort of record for the length

of program text without intervening labeled statements, and we did not

believe it could possibly be considered typical.

All but one of the DO loops in the above examples apparently have

variable bounds, but in fact the compiler could deduce that the bounds are

actially constant in most cases. For instance in Example 17, N is set

equal to 805 at the beginning of the program and never changed thereafter.

Table 3 summarizes the score ratios obtained in three examples;

0/1 denotes the ratio of the score for level 0 to the score for level 1,

etc.

It may be objected that measurement of the effects of optimization

is Lmpossible since programmers tend to change the style of their FORTRAN
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J23 --ES12T*SETN ESU12P*SERN 264,
U24 =-ES22T*SETN ES22E*SE~kN 265.

U3 -E SCUEV * !FT, F66F* SEPN 266.
U31 =-Esb6T*SFrIq 4 ES(6B*S~t3f4 267.
V3T --. *((E~j1T *S2) X +(*S2,E~I*Y)CX~ 26%.

V3lh 27?C.
-2.~ S~f.T()* 1*~S~~S~~2Y271.

V4T =-d.'( C Si1r+~.~s12r)*SXT+MiFS22TEs127H'S)T)*c'.XC4Y 2 72.
- E*sI) Q6-. I(M ) 4- T*-E S66ft. S X S4V 273.

V4~ 14 -8.*(( £S11e.ti*cS12B)*Sxl(MES22B+ES12B)*Sfu)*4X04Y 274.
-B.*t)SCRT(fv1*Te*FS66e*S4XS4Y 275.

V 51 ~2. ( 4 S. * ESI ITI 4 4 E S 12T )S XT+ (M*E S2 2T+9 .*F S 12T) * SYT1*C2 xC6Y 276.
-b. *0SC PI (mI * TT *ESo 6TS 2X.,6Y 277.

A(3) -- AI4-1L?*2.4-XI1 - 4.*A22*M4Le*4.*XL2 - A13*ML2*2.4-XlI 604.
1 T1*6/4.*X13 tc 3.
d: -TML2C*(All c.itA22 + A13) 606b.

3 -4,*f-V*StU2*ML2 607.
4- -ML2*(i.*tXll*(>hi+XI3)-BETA*X~I/LSC )-,Ott*02S 6C93.

I-TML2O4(X[/4. 4X:12 +- Nil) 609.
2 4*X*(Klle~.M*K2eX'S SAl1+Me Y*4*K22eK 12tY4-SB I 6 LC.

*k1+HXY M*66KNC 11) /2. 6 1 L.
4 +Y3 612.
A( 5) -Mi ie=*i. - A2.e*C-eS* 10. 613.

T P L20 t2 Xt13 614t.
+V4 6 5.

(1.14*16)= +Y1315 S59.

e (15 ,14 )= -, I I4 1 3 sC6
bi 16 f14) = A14 110 962.

B 15 911 0. q64.
B( 15#2) 0. 965.
9(15#3) -4 4.ML2 -Y ;60
Ui L 5, 15) ..- jv*dY P S QD I I B .flB) + Y 1414 q~67.

P 116, 15) E e(15 116 q7
13( 17 t 15 8 (15 ,17) q7 1.
B (16, 11)+ *L 2 *HY Y q2
d(16,2) 0. 973.
B( 1603) 0. 974.
".(16,16) - -bY*M~XY*t/(4.*CtbBl 4 Y1515 55

Figure 3. Excerpts from a remarkable programt.
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.wi.L . .:'Xuo. P pe , !atio. wLth various types of optimization.

. ., o/ o! 0/4 i/It 2/4 5/4

S.," 2. • 5 .h i .1 2.0 1.1

1 .... • ,  4. .8 -. 7 1.5 1.1

.5. , .h4 2.6 i.4

• j* : .8 y.h 5.6 3.2 1.1

-.1 ]. i , 4.4 3.9 3.0 2.8

9.', .o , .b 13.1 5.2 1.5 1.4

5 i. . 3 .6 2.6 2.5

1.i 2. -.5 2.9 i 1.5 1.2 1.1

l. 2.5 2.5 I.t 3.0 1.3 1.3

S 1.. 2.8 5.5 3.5 2.9 1.3 1.0

10 1.3 2.8 5.5 8.0 6.3 2.9 1.5

ii i.i 2.0 2.2 2.h 1.8 1.2 1.1

12 ". '  .:, 3. )3 .8 1.8 i.i 1.1

" 1..2 1 1.8 3.9 3.3 2.7 2.1
i 1.1 l. .l 2.3 2.1 1.4 1.1

15 1.", ,.. 2.8 3.3 2.5 1.4 1.1

1.1 1.1 1.1 1.5 1.4 1.3 1.3

17 i. :.. h.( 5.1 3.9 1.8 1.1



proTrams when they Know what kind of' optimizations are being done or

tnem.- However, the prol-,rum, we exwnined showed no evidence that the

prorariers had any Iden what the compiler does, except perhaps the

knowledge that "1" tv or I. not converted to "1.O" at compile time

when appropriate. Therefore we expect that such feedback effects are

very limited.

Note that level 3 and level h progrtxms ran L or more times as fast

as level 0 programs, in about half of the cases. Level 3 was not too far

from level 4 except in Examples 4 and 6 where short subroutine code was

expanded in line; by incorporating this technique and the idea of

replicating short loops, level 3 would come very close indeed to the

"ultimate" performance of level 4 optimization. (Before conducting this

study, the author had expectedi a much greater difference between levels

3 and h and had been experimenting with some more elaborate schemes for

optimization, capable of coming close to the level 4 code in the binary

search example above. But the sample programs seem to show that existing

optimization techniques are good enough, on our computer at least.)

Summary and Conclusions

Compiler writers should be familiar with the nature of programs

their compiler will have to handle. Besides constructing "best cases" and

"worst cases" it is a good idea to have some conception of "average

cases" . We hope that the data presented in this paper will help to give

a reasonably balanced impression of the programs actually being written

todt.y.

Of course every individual program is atypical in some sense, yet

our study showed that a small number of basic patterns account for most
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S, ," , ' ti t ] i .;, h'rips these prot-;rms can be

o t. "1.1t. I ,k,:ipar.'so'n ot' coi.pliler and mac tine speeds

':,!* C: a!'dv, wit. , "IAM> tuz:t" [,i. 1oe also F. Bryant's comparison

. .. .... 1 u~ i....... ''I n I i . Appendix 3', pp. 76 1i-767 1.

."!!ap.L , ::a. not t, correct., and so we hope people in other parta

' '. wo,.Id wi.L o'o:),Ic: c imilar experimens in order to see if independent

"10MLTe- ih :ov ?l'fl,Ie r'esults.

'.il., .a'Itw:,i o thse statistics we became convinced that a comparatively

uinp.e c(.un :, to the present. method oV' program preparation can make

...... a.t impro'.ements in ttie efficIency of computer usage. The program

pr ,i'le I .e.. collections of frequency counts) which we used in our

na.,-ses turned out to be so helpful that we believe profiles should be

made available routinely, to all pro&irwnmers by all of the principal

software sys ems.

,he "ideal syste'i of the future" will keep profiles associated with

souce prorams, usinm, the requency counts in virtually all phases of a

pro r.,a,:its life. Purin:, the debugging stage, the profiles can be quite

useful, e.-. for selective tracing; statements with zero frequency

Indicate uitested sections of the program. After the program has been

debu'-ed it may alread-y have served its purpose, but if it is to be a

f'requently used pro-,ram the hitch counts in its profile often suggest

basic ImrO 'eeInts that can be made. An optimizing compiler can also make

ver; eff'ectiv.e use of the profile, since it often suffices to do time

cons~unin'- opt.Imization on only one tenth or one twentieth of a program.

'i''e profile can also be used effectively in storage management schemes.

in earl,, days of computing, machine time wab king, and people worked

..ard to ',et extremely efficient programs. Eventually machines got larger

and faster, and the payoff for writing fast programs was measured in minutes



or' seconds nstead of hours. Moreover, in conisidcrint the total cost of

eomnputing, people be-uta to observe that protgrwii development and maintenance

costs often overshadowed the actual cost of running: the programs. Therefore

r.ost of the emphasis in software development has been in making programs

easier to write, easier to understand, and easier to chang:e. There is no

doubt that this emphasis has reduced total system cost,: in many installations;

but there is also little doubt that the n'orresponding lack of emphasis on

efficient code has resulted in systems which can be greatly improved, and

it seems to be time to right the balance. Frequency counts give an

important dimension to programs, showing programmers how to make their

routines more efficient with comparatively little effort. A recent study

[5] showed that this approach led to an eleven-fold increase in a particular

compiler's speed. It appears useful to develop interactive systems which

tell the programmer the most costly parts of his program, and which give

him positive reinforcement for his improvements so that he might actually

enaoy making the changes! For most of the examples studied in Section 4

we found that it was possible for a programmer to obtain noticeably better

performance by making straightforward modifications to the inner loop of

his FORTRAN source language program.

In the above remarks we have implicitly assumed that the design of

compilers should be strongly influenced by what programmers want to do.

An alternate point of view is that programmers should be strongly influenced

by what their compilers do; a compiler writer in his infinite wisdom may

in fact know what is really good for the programmer, and would like to steer

him towards a proper course. This viewpoint has some merit, although it has

often been carried to extremes in which programmers have to work harder and

make unnatural constructions just so the compiler writer has an easier job.



'A. w,.i , ,. , :' ait-:pp].t to a progrLrmmer, it will

:, :,:',. "!~a ',, i. .:', w .!,," nut)e ,',,s or" a laL a: he implementor

'1 ,o ,, , ,', ,ic, t,. the reporting. o' thild information

,,wa:. wu:, ,: ,rt a positive influence on the users of

: ,ls u: o.' sty su ,st several avenues for further research.

, ,.:,;~. , uldi'1. WnUa) static and dynamic statistics should be gathered

.n.o.k::. zt *: !%vl withi respect to local optimizations. A more

.Op. ,stLhat-ol study of t.hese statistics would also be desirable.

o.,, s~u,-e~ sens to have ,:Iven a reasonably clear picture of FORTRAN

as" is 'now *,ued. Other lanuages should be studied in a similar way, so

that software desviners can conceptualize the notion of "typical" programs

In '.iNOL, *11 :1, PL!, lISP, APL, SNOBOL, etc.

We r'ould that well-done optimization leads to at least a 4-or 5-fold

Increase in pro tWUm speed (exclusive of input/output editing) over straight

translation, in about half of the programs we analyzed. This figure is

,ased on a c(,uter such as the 3(0/67 at Stanford, and it may prove to

be sov ewhat different on other configurations; it would be interesting

to see .1ow .-uc> different the results would be if the seventeen examples

were worked ou.t carcfully for other types of computers. Furthermore,

a s...d, of the performance gain which would be achieved by in-line format

edltin - s det'ititely called for.

Ac we discussed the example programs we saw many occasions where it

is natural :'or ,nompiler optimization to be done interactively. The programmer

could perhaps be asked in Example 11 whether or not J will be nonnegative
1,

and less than throuthout the loop (so that J = J+I can be done

with a "load address" instruction); in Example 8 he might be asked whether



the distributive law could be used on his formulas; in Example 7 he

might be asked if X* +Ye*2 can ever overflow (if not, this calculation

may be taken out of the loop); and so on.

As the reader can see, there -s cons iderable work yet to be done an

empirical studies of progrrLT.ing, mucn more ti:an we could achieve in one

Summ~re r.
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A-ppendix. Examples of hand translation

The following code was produced from

DO 2 2 = 1, T:
!T A.7,rS(A(I,J))

IF (T-S) ,2,1-
1 S =T
2 COWTIWJE

using the various styles of hand translation described in Section 4. Only

the inner loop is shown, not the initialization.

Level 0.

Cost

Ql ST 5,J 2
L 5,2

A 2

SI'I,LE 2,:(uosA 0,7 2

S O,A(3) 2
LPER O, 0 1
STT 0, T
LB 0, T 2

SE OS
B01-i LT 1. 5

B LI 2 x.5
LI LE 0,T 2 x .5

STE, 0'S 2 x.
L2 L 5,J

A 5, IF'I- 2
C 5,:;
Bi Cl 2

A "dedicated" use of registers, and a straightforward statement-by-statement

approach, are typical of level 0.

Level 1.

Ql ST 5,J

I.R 2,5
A ,I
SLL 'j 2 '
LB oA(5) C:.

L2ER 03, T
STE 0, T2



L1.5

: '.. . :." . *'. , and ., t1he knowledge of register contents, and the

!'#1*:).,'.. 0":' ie Vthundant ivanch. The redundant LE in location Li is still

p:ese:nt, ec--venm le occurrence ot" a label potentially destroys the

Level. .

U..'1 O0 (0) 2
LPtR ,b

StE:R Ii,2 2
Bi~ L'-' 1.5

U tER 2,0 lx .5
1,. A 5, -A(AROWJ*4l ) 2

" N IC 22

'er ,, contains the precomputed address of A(IN) ; S is maintained

in f1oatin, re:'ister '.

Level .

,; 1 ,.: 1 (O, ( 3) 2
t,PER 0,0 1
C R 0," 1
11MM 2 1.5

L1 LE;R 2,0 lx .5L~iv:u 3,,J "2L" B"LE "* ,iO. 2

!'ere re1zt is preloaded with the address of 12 (for a microscopic

L-mpro':e-!ent), and registers i and 5 are preloaedd with appropriate values

,:'.er in. the : L"",
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Level 4.

ql LE 0,0(0,3) 2x.5
LPER 0,0 lx .5
CER, 0, 1 x .5 -

BNH- 2 15x .5
Ll.l LER 2,0 1 x .25
2.1 LE 0,14(0,) 2 x .5

LPER 0,0 lx .5
CER 0,2 lx .5
BN'1R 6 ].5x .5

Ll. LER 2,0 ix .25
Ll.2 BXLE 3.,4,Q1 2x .5

Since the loop program is so short it has been duplicated, saving half of

the BXLE's, wnen proper initialization and termination routines are

appended. (The code would have been written

Qi LE 0,0(0,3)
LPER 0,0
CER 0,2
BHR 2

L2.1 LE 0,4(0,3)
LPER 0,0
CER 0,2
BHR 6

L2.2 BXLE 3,4,Ql

Ll.1 LER 2,0
B L2.1

L.2 LER 2,0
B L2.2

if the frequency counts of this program would have given less weight to

statement 1.)

Note that the FORTRAN convention of storing arrays by columns would

make these loops rather inefficient in a pging environment; a compiler

should make appropriate changes to the storage mapping function for arrays

in such a case.

1o
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